
What Happened to C++20 Contract Support?
Nathan Myers, 2019-08-04, rev. 1

The Summer 2019 meeting of the ISO SC22/WG21 C++ Standard committee,
in Cologne, marked a first in the history of C++ standardization. This was the
first time, in the (exactly) 30 years since ISO was first asked to form a Working
Group to standardize C++, that the committee has removed from its Working
Draft a major feature, for no expressible technical reason.

Background
C++ language features have been found obsolete, and been deprecated, several
times, and actually retired slightly less often. This is normal as we discover
new, better ways to do things. A feature may be recognized as a mistake
after publication, as happened with export templates, std::auto_ptr, and
std::vector<bool>. (The last remains in, to everyone’s embarrassment.)

Occasionally, a feature has made its way into the Working Draft, and then
problems were discovered in the design which led to removal before the draft
was sent to ISO to publish. Most notable among these was Concepts, which was
pulled from what became C++11. The feature has since had substantial rework,
and the Standard Library was extended to use it. It is now scheduled to ship in
C++20, ten years on.

Historic Event
One event at the 2019 Cologne meeting was unique in the history of WG21:
a major language feature that had been voted into the Working Draft by a
large margin, several meetings earlier, was removed for no expressible technical
reason of any kind. This is remarkable, because ISO committees are generally
expected to act according to clearly argued, objective, written reasons that
member National Bodies can study and evaluate.

Nowadays, significant feature proposals are carefully studied by committees of
experts in these ISO National Bodies, such as the US INCITS (formerly “ANSI”),
and the British BSI, French AFNOR, German DIN, Polish PKN, and so on,
before being admitted into the committee’s Working Draft.

The reasons offered in support of adding the feature were, as always, written
down, evaluated by the ISO National Bodies, and discussed. None of the facts
or reasoning cited have since changed, nor have details of the feature itself. No
new discoveries have surfaced to motivate a changed perception of the feature or
its implications.

The feature in question, “Contracts”, was to be a marquee item in C++20,
alongside “Concepts”, “Coroutines”, and “Modules” – all firmly in, although
Modules still generates questions.

1



Contract Support as a Language Feature
What is Contract support? It would have enabled annotating functions with
predicates, expressed as C++ expressions, citing as many as practical of the
requirements imposed on callers of the function, about argument values passed
and the state of the program; and of details of results promised, both the value
returned and the state of the program after. It was meant to displace the C
macro-based assert().

Uses for such annotations, particularly when visible in header files, are notably
diverse. They include actually checking the predicates at runtime, before entry
and after exit from each function, as an aid to testing; performing analyses on
program text, to discover where any are inconsistent with other code, with one
another, or with general rules of sound programming practice; and generating
better machine code by presuming they are, as hoped (and, ideally, separately
verified), true.

The actual, informal contract of any function – the list of facts that its correct
operation depends on, and the promises it makes, whether implicit or written
somewhere – is always much larger than can be expressed in C++ predicates.
Even where a requirement can be expressed, it might not be worth expressing,
or worth checking. Thus, every collection of such annotations is an exercise in
engineering judgment, with the value the extra code yields balanced against the
expense of maintaining more code (that can itself be wrong).

For an example, let us consider std::binary_search. It uses a number of
comparisons about equal to the base-2 log of the number of elements in a
sequence. Such a search depends, for correct operation, on several preconditions,
such as that the comparison operation, when used on elements encountered,
defines an acyclic ordering; that those elements are so ordered; and that the
target, if present, is where it should be. It is usually asked that the whole
sequence is in order, though the Standard stops just short of that.

Implicitly, the state of the program at entry must be well defined, and all the
elements to be examined have been initialized. Absent those, nothing else can
be assured, but there is no expressing those requirements as C++ predicates.

To verify that all the elements are in order, before searching, would take n-1
comparisons, many more than log n for typical n, so checking during a search
would exceed the time allowed for the search. But when testing a program, you
might want to run checks that take longer, anyway. Or, you might check only
the elements actually encountered during a search. That offers no assurance
that, if no matching element is found, it is truly not present, but over the course
of enough searches you might gain confidence that the ordering requirement was
met.

Alternatively, the sequence may be verified incrementally, during construction,
or once after, and the property exposed via its type. Or, a post-condition about
each element’s immediate neighbors after insertion may be taken, deductively,

2



to demonstrate the precondition, provided there were no other, less-disciplined
changes.

An analysis tool, finding a sequence modified in a way that does not maintain its
sorted order, might warn if it finds a binary search performed on the resulting
sequence.

History
Contracts, as a feature, were first presented to the committee in 2012 as a proposal
for a header defining a set of preprocessor macros, a sort of hypertrophied C-style
assert(), practically useful only for runtime testing. This proposal bounced
around until late 2014, when it was definitively rejected by the full committee,
in effect pointedly inviting the authors not to bring it back. The committee did
not want features that would increase dependence on preprocessor macros.

In the form removed from the Working Draft this year, contracts were a core-
language feature usable for all the noted purposes. The feature was first presented
in November 2014, initially just as a suggested direction of development. Over
the following two years it was worked on by a small group to ensure it would
serve all the intended uses. The result, as agreed upon within the group, was
presented and voted into the Working Draft, essentially unchanged.

The central feature of the design accepted was that the predicate expressions
were usable for any purpose, with no changes needed to source code from one
use to the next. In any correct program, all are true, so their only effect would
be on incorrect programs; at different times, we want different effects. To require
different code for different uses would mean either changing the code, thus
abandoning results from previous analyses, or repeating annotations, which
would be hard to keep in sync. Or macros.

Almost immediately after the feature was voted in, one party to the original
agreement – authors of the rejected 2012 design – began to post a bewildering
variety of proposals for radical changes to the design, promoting them by
encouraging confusion about consequences of the agreed-upon design.

One detail of the adopted design turned out to be particularly ripe for confusion.
Recall that one use for contract annotations is to improve machine-code genera-
tion by presuming that what is required is, in fact, true. The text adopted into
the Working Draft permitted a compiler to presume true any predicate that it
was not generating code to test at runtime. Of course no compiler would actually
perform such an optimization without permission from the user, but in the text
of the Standard it is hard to make that clear. The Standard is tuned to define,
clearly, what is a correct program, and what a compiler must do for one, but a
program where a contract predicate is not true is, by definition, incorrect.

A lesser source of confusion concerned must happen if a predicate were found, at
runtime, to be violated. Normally this would result in a backtrace report and
immediate program termination. But it was clear that, sometimes, such as when

3



retrofitting existing and (apparently) correct code, the best course would be to
report the violation and continue, so that more violations (or annotation errors)
could be identified on the same run.

Choosing among these various behaviors would involve compiler command-line
options, but the Standard is also not good at expressing such details. In the
Draft, the choices were described in terms of “build modes”, but many felt
they would need much finer-grained control over what the compiler would do
with annotations in their programs. Of course, actual compilers would support
whatever users would need to control treatment of annotations, but at the time
the only compilers that implemented the feature were still experimental.

None of the confusion was over which programs are correct, or what a correct
program means, yet it exercised a curious fascination.

I do not mean to suggest that the design in the Draft was perfect. For example,
as it was translated to formal wording in the Working Draft for the Standard, the
effect of side effects in a predicate expression became “undefined behavior”. It is
obviously bad that adding checks to help improve and verify program correctness
could so easily make a program, instead, undefined. This would have been fixed
in the normal course of preparations to publish a new Standard, but it is notable
that none of the proposals presented touched on this most glaring problem.

Similarly, it was clear that it would be helpful to allow marking an annotation
with an identifier to make it easier to tell the compiler to treat it differently, but
no proposal suggested that.

What Happened in Cologne
The profusion of change proposals continued in Cologne. Most proposals sug-
gested making the feature more complex and harder to understand. The impres-
sion they created was of a feature that was unstable and unclear, even though
they identified no actual problems with the version in the Draft.

The Fear, Uncertainty, and Doubt (“FUD”) engendered by all the incompatible
proposals predictably led members of the Evolution Working Group asked to
consider them to look for a simpler version of the the feature to provide primitives
that would be usable immediately, but that could be built upon in a future
Standard with benefit of hindsight.

One of the proposals, not seen before the day it was presented, seemed to offer
that simplicity, and the group seized upon it, voting for it by a margin of 3 to 1. It
was opposed by four of the five participants of the original design group, because
it was fatally flawed: in use, programmers would need to define preprocessor
macros, and put calls to those in their code instead of the core-language syntax
defined. It would breed “macro hell”.

On top of its inherent flaws, it amounted to a radical redesign from what was
originally accepted by the full committee. Making radical changes immediately

4



before sending a Draft Standard out for official comment was well beyond the
charter of the Evolution Working Group at that meeting, which was expected to
spend its time stabilizing the Draft. (The Chair of that group was well aware of
this expectation. We are left to speculate why he permitted the vote.)

The immediate, predictable effect was panic. The most likely consequence
of a radical change would be that, when asked for comment, some National
Bodies would demand a return to the design they had originally voted in; others
would demand the feature be removed, as evidently unstable. (There was never
a practical possibility of sending the Draft out for comments with the voted
change, or of a National Body demanding that version.) Such a conflict is among
the worst possible outcomes in standardization efforts, as they threaten a long
delay in publishing the next Standard.

Two days later, the same Evolution Working Group voted to remove the feature
entirely. To head off a conflict between National Bodies, the authors of the
original proposal and the authors of the change met and agreed to recommend
that the committee accept removal. The following Saturday, the full committee
voted for that removal, unanimously (with some abstentions).

What Happens Next
C++20 is now considered “feature complete”. The Draft will be studied by all
the interested National Body committees, which will come back with lists of
changes that must be considered. (Changes they list generally cannot include
features to be added.)

A new “study group”, SG21, was formed to conduct formal meetings, with
minutes, and produce a public document recommending action for a later
standard. The target is intended to be the Standard after this, C++23, but
since the Study Group has, as members, all the authors of all the proposals,
to hope for agreement on a proposal in time for the next Standard would be
absurdly optimistic. In particular, several of the members of the Study Group
have explicitly denounced the central goals of the original design, in favor of
preprocessor macros, so the group starts without so much as a coherent goal.
All it has, really, is a feature name.

C++20 will be published with no Contract support.

5


	What Happened to C++20 Contract Support?
	Background
	Historic Event
	Contract Support as a Language Feature
	History
	What Happened in Cologne
	What Happens Next


